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The protein folding questions : |

¢ How can proteins fold in a so short time scale (us, ms) ?

¢ What are the driving forces in proteins folding ?

Free Energy (AG)

Unfolo.le.d states : /// I Folded states :
stabilized by Fraction of native contacts (Q) stabilized by
entropy enthalpy

Classic free-energy representation
for two-states proteins




There are many ways to unfold proteins :

Irreversible methods :

e Urea, GuHCl : chemical denaturation

* pH : acid denaturation

Reversible methods :

* Temperature : heat or cold denaturation

* Pressure




The p,'T stability phase diagram :

dAG = -ASdT + AVdp
Hawley (Biochemistry) 1971

Taylor expansion up to

the second order Smeller (BBA) 2002
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Diagram representation :




Molecular Dynamics simulations of proteins :

All-atom MD simulation is a usefull method

to study folding/unfolding

Popular packages :
- CHARMM
- AMBER
- GROMACS
- NAMD
- MOSCITO

Actual computational facilities give access
to us time scale for all-atom explicit solvent
simulations of peptides and small proteins




Heat / pressure effects on kinetics : l

* Heat : decrease free energy surface roughness : & speed folding /

unfolding (us)

* Pressure : increase free energy surface roughness : M speed folding /
unfolding (ms)

P A 1 AS=0)

Classic MD simulations can only explore
the temperature dimension




Coarse-grained methods for
high pressure simulations :

1. Go-model with pressure-dependant PMF

2. Multi-scale coarse graining at high pressure




Go-model with pressure

dependant PMF :

First assumption - Interactions between natives contacts are
the main forces driving proteins folding

No energetical frustration — Only topological frustration

Up = SK(r=1) + S K (0-0,)+ 3 %[lﬂ:os(n(p—y)]

bonds angles dihedrals
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Go-model with pressure

dependant PMF :

Second assumption :

Pressure denaturation is due to water
penetration and destabilisation of
hydrophobic contacts
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Already used as model for protein
folding simulations :

-Hillson et al. PNAS (1999)

Go-model with pressure

dependant PMF :

- Cheung et al. PNAS (2002)
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Multi-scale coarse-graining : No assumption !

Variationnal principles used
to determine the optimal
approximation of the multi-
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Multi-scale coarse-graining :

Trp-cage : smallest protein model

Fully equilibrated

simulation at 1 atm
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Direct comparison of
pressure effects
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