

Etude par spectroscopie infrarouge de l'amorphisation des zéolites sous pression

<u>Claire Levelut¹</u>, Julien Haines², Aude Isambert³, Philippe Hébert³, Olivier Cambon², David Maurin¹

¹ Laboratoire des Colloïdes, Verres et Nanomatériaux, Montpellier, France

² Institut Charles Gerhardt Montpellier, France

³ CEA Le Ripault, France

Introduction

- Zéolites: alumino-silicates poreux hydratés de calcium, magnésium et potassium
- •Assemblage tridimensionnel de tétraèdres AlO₄ et SiO₄. Chaque Al présent dans la structure apporte une charge négative qui est contre-balancée par un cation, (Ca²⁺, Mg²⁺, K+,Na+).
- •Porosité: tamis moléculaires, échangeur d'ions, catalyses, etc
- •Propriétés mécaniques inusuelles: dilatation thermique négative, amorphistaion sous pression, polyamorphisme
- •absorbeurs d'ondes de choc ↔ comportement sous pression dynamique
- •plusieurs techniques complémentaires : spectroscopies Raman et IR, diffraction et diffusion totale des RX (exposé J. Haines)
- → changement structuraux
- → amorphisation sous pression

Mesures Infrarouge

- •Cellule à enclumes diamants
- •Cellule à membrane: déformation d'une membrane métallique sous l'effet d'un gaz sous pression (qques bars)→qques GPa dans la cellule

Mesures Infrarouge

Mesures en transmission, spectromètre FT-

IR Bruker IFS66v

•400-5000 cm⁻¹ avec 2 détecteurs:

MCT (5000-800 cm⁻¹), DTGS (4000-400 cm⁻¹)

osignal faible:50 à 150 cps MCT, 7 cps DTGS (vs 21000)

- >Projet: condenseur de faisceau:
 - meilleur signal dans la zone déjà accessible
 - étendre la gamme de fréquence (IR lointain)

eéchantillon épaisseur initiale 50-60μm, Ø
 140μm (Ø faisceau qques mm)

Mesures Infrarouge

otransmetteur de pression +diluant : NaBr

NaBr dopé NaNO₂ (0,4%)

- Marqueur de pression: ions nitrites « isolés »
- ●IR+NaBr → problèmes d'humidité, hydrate NaBr,6H₂O
- Chargement en sac à gants
- >projet: chargement sous boite à gants

Faujasite: matériau

Faujasite NaX (poudre synthétique)

Na₈₆Al₈₆Si₁₀₆O₃₈₄ ~175 H₂O

Si/Al = 1.23

Zéolite très poreuse et très hydratée Masse volumique 1.93g/cm³

Faujasite: résultats infrarouge (compression)

Faujasite: résultats infrarouge (décompression)

faujasite (more concentrated)

decompression (DTGS) decompression (MCT) decompression (MCT)

A la décompression: on retrouve une partie de l'intensité, modes + fins, décalés

Faujasite: résultats infrarouge (décompression)

A la décompression, disparition des modes 6MR

Faujasite: résultats infrarouge

- Changement de pente vers 1.5-2GPa,
- Observé aussi en IR dans une faujasite silicieuse (Havenga 2003) et dans la zéolite A (Huang 2001)
- •Modes à 3400cm-1: 2 changement de pentes à 3 et 4.5GPa, dépressurisation locale ?
- Raman
- **>**Amorphisation
- >Changement de pente vers 1.5 GPa
- ➤ Densification de la forme haute pression : augmentation des 3MRs (Reynard 1999)
- >amorphisation irréversible
- diffraction des rayons X (exposé J. Haines)
 compressibilité proche de celle du quartz →
 compressibilité très faible
 Dépressurisation locale (Greaves 2007, 2004)
- →propriétés d'absorbeur de chocs

Résumé/Conclusion

œ

Zeolite:

Amorphisation sous pression

•Dépressurisation locale ?

•Effet très fort sur les modes OH: sonde locale très sensible aux évolutions du réseau silicaté

